Symbiotic Relationship between Human and Bifidobacteria

Kenji YAMAMOTO

Graduate School of Biostudies, Kyoto University

Bifidobacterium longum

Classification of Major Lactic Acid Bacteria

Kingdom

History of Bifidobacteria

<u>1899 Tissier</u>

Tissier found and isolated a new bacterium from infant's feces, and named the bacteria as '*Bacillus bifidus communis*'. This is the finding of bifidobacteria.

1924 Orla-Jensen

Orla-Jensen proposed to establish new genus '*Bifidobacterium*', but the proposal was not accepted.

1933~1934 Weiss and Rettger

They regarded bifidobacteria as a species of Lactobacilli and classified into genus '*Lactobacillus*'.

<u>1958~</u> Ochi and Mitsuoka et al, Rogosa et al, Sharpe, Reuter, Werner Bifidobacteria were excluded from genus 'Lactobacillus' and genus 'Bifidobacterium' was newly established.

Various Bifidobacteria were Isolated from Various Sources

Aminal Origin

Human Origin

B. adolescentis	(adult faeces)
B. angulatum	(adult faeces)
B. bifidum	(child and adult faeces, vagina)
B. breve	(child faeces, vagina)
B. catenulatum	(child and adult faeces, vagina)
B. denticolens	(buccal cavity, adult faeces)
B. dentium	(buccal cavity, adult faeces)
B. gallicum	(adult faeces)
B. infantis	(child faeces, vagina)
B. inopinatum	(buccal cavity)
B. longum	(child and adult faeces, vagina)
B. pseudocatenulatum	(child faeces)

B. animalis	(rat, chicken, rabbit and calf faeces)
B. asteroides	(bees)
B. boum	(rumen, piglet faeces)
B. choerium	(piglet faeces)
B. coryneforme	(bees)
B. cuniculi	(rabbit faeces)
B. gallinarum	(chicken faeces)
B. indicum	(bees)
B. magnum	(rabbit faeces)
B. merycicum	(rumen)
B. pseudolongum pseudolongum	(piglet, chicken, calf and rat faeces, rumen)
B. pseudolongum globosum	(piglet, chicken, calf and rat faeces, rumen)
B. pullorum	(chicken faeces)
B. ruminantium	(rumen)
B. saeculare	(rabbit faeces)
B. suis	(piglet faeces)
B. thermophilum	(piglet, chicken and calf faeces, rumen)

Environmental and Food Origins

B. lactis	(fermented milk)
B. minimum	(sewage)
B. subtile	(sewage)
B. thermacidophilum	(anaerobic digester)

Most of Bifidobacteria are found in human and animal sources

Bifidobacteria Decrease with Aging of Human

Ratio of Bifidobacteria in human flora is decreased and their species are changed with aging

Bifidobacteria are Approved as Probiotics

The number of LAB listed in 'CIAA EU Nutrition and Health Claims Regulation'

Lactobacilli	Number
L. acidophilus	15
L. bulgaricus	2
L. casei	9
L. coryniformis	2
L. fermentum	1
L. gasseri	4
L. helveticus	4
L. jonsonii	5
L. paracasei	5
L. plantarum	3
L. reuteri	3
L. rhamnosus	8
Total	61

Bifidobacteria	Number
B. adolescentis	2
B. animalis	18
B. bifidum	5
B. breve	3
B. infantis	2
B. longum	4
Total	34

Potential effects

- Intestinal health
- Digestive health
- Natural defense
- Immune defense
- · Skin health

Cited from;

http://www.efosz.hu/letoltes/FCP28307E%20tudref1.pdf

In additon to Lactobacilli, Bifidobacteria are also approved as major probiotic bacteria.

Bifidobacteria are Applied as Food Additives and Dietary Supplements

Cited from; 'Morinaga Milk Industry Co., Ltd.' (http://www.morinagamilk.co.jp/index.html) and 'DANONE JAPAN Co., Ltd.' (http://www.danone.co.jp/index.html)

Alteration of Microbial Phase in Newborn Infant's Feces

Alteration of Intestinal Microflora in Human Lifetime

Metabolic Pathway of Sugar in Lactic Acid Bacteria

2 Glucose 2 ATP → 2 ADP Fructose-6-P Fructose-6-P – Pi Acetyl-P Erythrose-4-P ATP **ADP** Glyceraldehyde-3-P Sedoheptulose-7-P Acetate Xylulose-5-P Ribose-5-P Ribulose-5-P Xylulose-5-P 2Pi 2 Acetyl-P 2 Glyceraldehyde-3-P 4 ATP 2 ATP 2Pi 2 ADP 4 ADP 2 Acetate 2 Lactate

Metabolic Pathway of Sugar in Bifidobacteria

Analysis of Genomic DNA from *Bifidobacterium bifidum* JCM1254

Total number of contigue bp ; 2,218,867 Total number of presumed ORF ; 1,769

Clusters of Orthologous Groups (COG) classification	Ratio (%)
Amino acid transport and metabolism	9.3
Carbohydrate transport and metabolism	8.3
Cell cycle control, cell division, chromosome partitioning	2.1
Cell motility	0.5
Cell wall/membrane/envelope biogenesis	5.6
Chromatin structure and dynamics	0.1
Coenzyme transport and metabolism	3.4
Cytoskeleton	0.0
Defense mechanisms	3.3
Energy production and conversion	4.2
Extracellular structures	0.0
Function unknown	6.6
General function prediction only	10.9
Inorganic ion transport and metabolism	4.1
Intracellular trafficking, secretion, and vesicular transport	1.6
Lipid transport and metabolism	2.3
□Not annotated	2.0
Nuclear structure	0.0
Nucleotide transport and metabolism	3.7
Posttranslational modification, protein turnover, chaperones	3.5
RNA processing and modification	0.1
Replication, recombination and repair	8.5
Secondary metabolites biosynthesis, transport and catabolis	m 1.0
Signal transduction mechanisms	3.3
Transcription	6.4
Translation, ribosomal structure and biogenesis	9.2

Relationship between Intestinal Tract and Befidobacteria

Schematic Model of Sugar Chains on Cell Surface Membrane

Structure of Determinant of ABO-type Blood Group Substances

Distribution of 1,2-a-L-Fucosidase Activity in Bifidobacteria

culture fluid

Structure of 1,2-a-L-Fucosidase from *B.bifidum* JCM1254

Overall Structure of Catalytic Domain of 1,2-a-L-Fucosidase

alpha helical barrel domain

Overall Structure of Catalytic Domain of 1,2-α-L-Fucosidase

Substrate Specificity of *B.bifidum* 1,2-α-L-Fucosidase

Substrate	Structure	Activity (%)	Substra	ate Structure	Activity (%)
2'-FL	Gal β 1->4Glc Fuc α 1	100	3-FL	Gal $\beta 1 \longrightarrow 4$ Glc $\beta 3$ Fuc $\alpha 1$	trace
H(II)	Gal β 1->4GlcNAc 2 Fuc α 1	74	LNF P-V	Galβ1→3GlcNAcβ1→3Galβ1-	→ 4Glc ↓3 Fucα1
Н	Galβ1 ▲2 Fucα1	27	LNF P-II	Galβ1→3GlcNAcβ1→3Galβ1- ↑4 Fucα1	►4Glc ND
A	GalNAc α 1 \rightarrow 3Gal β 1 \uparrow 2 Fuc α 1	5.9	FDA C	Fucα1 ∳6 GlcNAcβ1→ 4GlcNAc	ND
В	Gal α 1 \rightarrow 3Gal β 1 \uparrow 2 Fuc α 1	trace			
LNF P-I	Galβ1→3GlcNAcβ1→3Galβ ↑2 Fucα1	1 → 4Glc 61	<i>p</i> NP- Fuc	Fuc $\alpha 1 \rightarrow p NP$ Fuc $\beta 1 \rightarrow p NP$	ND

LNFP; lacto-*N*-fucopentaose FDAC; fucosyldiacetylchitobiose 'Trace' indicates less than 1% activity.

Schematic Model of Sugar Chains on Cell Surface Membrane

Endo-α-*N*-acetylgalactosaminidase Activity of Various Bifidobacteria

Structure of Endo-**a**-*N*-acetylgalactosaminidase from *B.longum* JCM1217

Crystal Structure of Endo-*α***-***N***-acetylgalactosaminidase**

Structure of Endo-*α***-***N***-acetylgalactosaminidase**

Substrate	Type	Activity
GalNAc α -pNP	Tn antigen	_
Gal β 1-3GalNAc α -pNP	Core 1 (T antigen)	+ + +
Gal β 1-3(GlcNAc β 1-6)GalNAc α -pNP	Core 2	—
GlcNAc β 1-3GalNAc α -pNP	Core 3	+
GlcNAc β 1-3(GlcNAc β 1-6)GalNAc α -pNP	Core 4	—
GalNAc α 1-3GalNAc α -pNP	Core 5	_
GlcNAc β 1-6GalNAc α -pNP	Core 6	—
GalNAc α 1-6GalNAc α -pNP	Core 7	_
Gal α 1-3GalNAc α - <i>p</i> NP	Core 8	—
Glc β 1-3GalNAc α -pNP		++
Glc β 1-6GalNAc α -pNP		—
GalNAc β 1-3GalNAc α -pNP		++
Gal β 1-6GlcNAc α -pNP		—
Gal α 1-6GalNAc α - <i>p</i> NP		—
Gal β 1-3GlcNAc α -pNP		<u>+</u>
Gal β 1-3GalNAc-SPh		<u>+</u>

Substrate Specificity of *B.longum* Endo-α-*N*-acetylgalactosaminidase

Model Structure of Human Milk Oligosaccharides

Similarity of Core Structure of Mucin Sugar Chain with Core Structure of Human Milk Oligosaccharides

Core structure of sugar chain of Mucin glycoprotein

Galβ1-3GalNAc

Core structure of human milk oligosaccharides

 $Gal\beta 1-3GlcNAc$

Lacto-N-biose

Screening of Lacto-N-biosidase Activity in Cell Suspension of Various Bifidobacteria and Other Lactic Acid Bacteria $Gal\beta1-3GlcNAc\beta1-3Gal\beta1-4Glc \rightarrow Gal\beta1-3GlcNAc + Gal\beta1-4Glc$ (LNB) (LNT) (Lac) $\begin{array}{c} \text{Glc} \vartriangleright \\ \text{Gal} \vartriangleright \end{array}$ LNB 🗁 Lactose LNT B. B. How A. D. A. B. Marin B. Hanis CARL. C. H. M. S. A. M. C. 7400 the server JCN 1130 B. breve cib B. P. idun Lb. casei^{sp.} 49. 50. 79.

Structure of Lacto-N-biosidase from B.bifidum JCM1254

Crystal Structure of Solute Binding Protein of ABC-Transporter from *B.longum* Specific for Lacto-*N*-biose

Solute binding protein of ABC transporter for sugars 1317 bp, 438 amino acids

Functional Analysis of Solute Binding Protein

Isothermal titration calorimetry analysis

Gal (β 1-3) GlcNAc

Gal (β 1-4) GlcNAc

Galactose β 1-3 *N*-Acetylaminosugar

Sugar	Structure	Relative growth
None		35
Non-prebiotic sugars		
Glucose	Glc	100
Lactose	Gal-β1,4-Glc	101
Prebiotic oligosaccharides		
Fructo-oligosaccharides	Glc-β1,2-Fru(-β2,1-Fru)n	68
Isomalto-oligosaccharides	Glc(-α1,6-Glc)n Glc-α1,6-Glc-α1,4-Glc	84
Gentio-oligosaccharides	Glc(- β 1,6-Glc)n	73
Xylo-oligosaccharides	Xyl(-β1,4-Xyl)n	36
Raffinose	Gal-α1,6-Glc-β1,2-Fru	99
Lacto-N -biose	Gal-β1,3-GlcNAc	85

Effect of Addition of Various Sugars on Growth of Bifidobacteria

Bacteria (strain) Growth (LN		NB / None)
	24 h	48 h
Bifidobacteria		
B.adolescentis (JCM1275)	+	+
B.angulatum (JCM7096)	-	-
B.animalis lactis (JCM10602)	±	±
B.bifidum (JCM1254)	+	++
B.bifidum (JCM1255)	-	±
B.bifidum (JCM7004)	+	+
B.breve (JCM1192)	+	+
B.catenulatum (JCM1194)	+	+
B.gallicum (JCM8224)	±	±
B.longum (JCM1217)	++	++
B.longum (JCM1222)	+	++
B.longum (JCM7054)	++	++
B.pseudocatenulatum (JCM1200)	+	+
B.pseudolongum pseudolongum (JCM1205)	±	±
B.scardovii (JCM12489)	-	±

Effect of Addition of Lacto-*N***-biose to Culture Medium on Growth of Various Bifidobacteria**

Effect of Addition of Lacto-*N***-biose to Culture Medium on Growth of Various Intestinal Microorganisms**

Bacteria (strain)	Growth (LNB / None)	
	24 h	48 h
Bacteroides		
B.ovatus (JCM5824)	+	+
B.thetaiotaomicron (JCM5827)	+	±
Clostridia		
C.celatum (JCM1394)		
C.hiranonis (JCM10541)	±	±
C.hylemonae (JCM10539)	+	+
C.spiroforme (JCM1432)		
C.scindens (JCM6567)	-	+
Enterococci		
E.pseudoavium (JCM8732)	±	±
E.raffinosus (JCM8733)	±	+
Eubacteria		
E.limosum (JCM6421)	±	±
E.cylindroides (JCM10261)		
Propionibacteria		
P.acnes (JCM6425)	±	+
$++ \rightarrow$ Highly effective	(LNB/None = 2.00	~ 2.99)
$+$ \rightarrow Effective	$(LNB/None = 1.20 \sim 1.99)$	
$\pm \rightarrow \text{No effect}$	(LNB/None = 0.80	~ 1.19)
$- \rightarrow \text{Inhibit}$	(LNB/None = ~ 0.'	79)

Acknowledgement

Kyoto University, Graduate School of Biostudies Dr.Y.Makimura Ms.N.Nagamine Ms.A.Sakuma Ms.A.Tsuchiya

Shizuoka University, Faculty of Agriculture Prof.T.Usui Dr.T.Murata High Energy Accelerator Research Organization (KEK) Dr.S.Wakatsuki Dr.R.Katoh Dr.M.Nagae

Ishikawa Prefectural University Prof.H.Kumagai Mr.J.Wada

The University of Tokyo, Department of Biotechnology R.Suzuki S.Fushinobu

Thank you for your attentions !

謝謝!

Candidate for Catalytic Residues of 1,2-α-L-Fucosidase

Glycolipid	ls Structure	
Relativ	/e	
Binding activity		
Glucosylc	Glc β1-1'Cer	72
Galactosylcera	amide Gal β1-1'Cer	46
Lactosylceram	$Gal \beta 1-4Glc \beta 1-1'Cer$	89
CTH	Gal α 1-4Gal β 1-4Glc β 1-1'Cer	100
Globoside	GalNAc β1-3Gal α1-4Gal β1-4Glc β1-1'Cer	0
Forssman hap	ten GalNAc α 1-3GalNAc β 1-3Gal α 1-4Gal β 1-4Glc β 1-1'Cer	0
GM3	NeuAc α2-3Gal β1-4Glc β1-1'Cer	0
GM2	GalNAc β1-4(NeuAc α2-3)Gal β1-4Glc β1-1'Cer	0
GM1	Gal β 1-3GalNAc β 1-4(NeuAc α 2-3)Gal β 1-4Glc β 1-1'Cer	0
GD3	NeuAc α 2-8NeuAc α 2-3Gal β 1-4Glc β 1-1'Cer	0
GD1a	NeuAc α2-3Gal β1-3GalNAc β1-4(NeuAc α2-3)Gal β1-4Glc β1-1'Cer	0
GT1b	NeuAc α 2-3Gal β 1-3GalNAc β 1-4Gal β 1-4Glc β 1-1'Cer	0
	NeuAc α 2-8NeuAc α 2	
GQ1b	NeuAc α 2-8NeuAc α 2-3Gal β 1-3GalNAc β 1-4Gal β 1-4Glc β 1-1'Cer	0
	NeuAc α 2-8NeuAc α 2	
GA1	Gal β 1-3GalNAc β 1-4Gal β 1-4Glc β 1-1'Cer	94
Lc4	Gal β 1-4GlcNAc β 1-3Gal β 1-4Glc β 1-1'Cer	35
SPG	NeuAc α 2-3Gal β1-4GlcNAc β1-3Gal β1-4Glc β1-1'Cer	0
Sulfatide	HSO3-3Gal β1-1'Cer	27

Binding Activity of *Lactobacillus casei* **to Various Glycosphingolipids**

Gal, D-galactose; GalNAc, *N*-acetylgalactosamine; Glc, D-glucose; GlcNAc, *N*-acetylglucosamine; NeuAc, *N*-acetylneuraminic acid; Cer, ceramide

Glycosphingolipids	Structure	Lb.casei	Lb.reuteri	Lb.johnsonii
Glucosylceramide	Glcβ1-1'Cer	++	-	+
Galactosylceramide	Galβ1-1'Cer	+	+	nd
Lactosylceramide	Gal ^β 1-4Glc ^β 1-1'Cer	++	+	nd
CTH	Galα1-4Galβ1-4Glcβ1-1'Cer	++	-	-
Isotriaose	Galα1-3Galβ1-4Glcβ1-1'Cer	nd	nd	+
Globoside	GalNAcβ1-3Gal α1-4Galβ1-4Glcβ1-1'Cer	-	-	-
Forssman hapten	GalNAcα1-3GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1'Cer	-	-	-
GM3	NeuAcα2-3Galβ1-4Glcβ1-1'Cer	-	-	-
GM2	GalNAc β 1-4(NeuAc α 2-3)Gal β 1-4Glc β 1-1'Cer	-	-	nd
GM1	$Gal\beta 1-3GalNAc\beta 1-4(NeuAc\alpha 2-3)Gal\beta 1-4Glc\beta 1-1'Cer$	-	-	nd
GD3	NeuAc α 2-8NeuAc α 2-3Gal β 1-4Glc β 1-1'Cer	-	nd	nd
GD1a NeuAcα2-	$3Gal\beta 1-3GalNAc\beta 1-4(NeuAc\alpha 2-3)Gal\beta 1-4Glc\beta 1-1'Cer$	-	-	nd
GT1b	NeuAc α 2-3Gal β 1-3GalNAc β 1-4Gal β 1-4Glc β 1-1'Cer	-	nd	nd
	NeuAca2-8NeuAca2			
GQ1b NeuAca	2-8NeuAc α 2-3Gal β 1-3GalNAc β 1-4Gal β 1-4Glc β 1-1'Cer 3	-	nd	nd
	NeuAca2-8NeuAca2			
GA1	Galβ1-3GalNAcβ1-4Galβ1-4Glcβ1-1'Cer	++	++	++
Lc4	Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-1'Cer	+	nd	+
Lactotetraose	Galβ1-3GlcNAcβ1-3Galβ1-4Glcβ1-1'Cer	nd	nd	+
SPG	NeuAc α 2-3Gal β 1-4GlcNAc β 1-3Gal β 1-4Glc β 1-1'Cer	-	nd	-
Sulfatide	HSO3-3Galβ1-1'Cer	+	+	-

Binding Activities of *Lactobacillus* **to Various Glycosphingolipids**

Gal, D-galactose; GalNAc, *N*-acetylgalactosamine; Glc, D-glucose; GlcNAc, *N*-acetylglucosamine; NeuAc, *N*-acetylneuraminic acid; Cer, ceramide. nd : not done.

乳酸菌による抗体産生増強作用

